
Climate Data Analysis Tools

Version 3

May, 2001

Program for Climate Model Diagnosis and
Intercomparison (PCMDI) Lawrence Livermore
National Laboratory, Livermore California 94550

Legal Notice

Copyright (c) 1999, 2000. The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for any pur-
pose without fee is hereby granted, provided that this entire notice is
included in all copies of any software which is or includes a copy or mod-
ification of this software and in all copies of the supporting documenta-
tion for such software.

This work was produced at the University of California, Lawrence Liver-
more National Laboratory under contract no. W-7405-ENG-48 between
the U.S. Department of Energy and The Regents of the University of Cal-
ifornia for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Gov-
ernment nor the University of California nor any of their employees,
makes any warranty, express or implied, or assumes any liability or
responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any spe-
cific commercial products, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Govern-
ment or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

Table of Contents

CHAPTER 1 Getting Started With CDA T3

Introduction 3
A New Paradigm 3
The CDAT Project at SourceForge 4

Setting up CDA T5
Learning Python 6
The VCDAT GUI 7

CHAPTER 2 Basic tutorials 9

How to get the tutorials and d ata9
getting_started_tutorial.py 9
Statistics 11
Dealing with time 12
Plotting with xmgrace 12

CHAPTER 1 Creating New Packages 15

Adding your scienc e15

CHAPTER 2 User-contributed package s17

Package: asciidata 18
Package: binaryio 18

Usage summary: 18

Package: eof 20
Example 20

Package: lmoments 22
Package: regridpack 23
Package: sphere (spherepack) 24

trends 25
Package: ort 26

 Calling sequenc e:26

CHAPTER 1 Getting Started With
CDAT

CDAT is an open-source, Python-based set of tools for scientific data analysis and graphics.
1.1 Introduction

1.1.1 A New Paradigm

The software you are about to use, CDAT (Climate Data Analysis Tools),
may be unlike any software you may have used before. Rather than a mono-
lithic interface with a fixed number of predetermined commands, CDAT is a
set of components that can be programmed under the direction of the user.
The set of components can be extended with additional algorithms and com-
piled code written by the user or written by other members of the commu-
nity. This kind of extension does not require the cooperation or consent of
the CDAT authors or even the recompilation of any of CDAT itself.

CDAT is based on the popular scripting language Python (http://
www.python.org). Python is easy to learn, and most importantly for our pur-
poses, easy to extend with your own compiled code and additional modules
written in Python itself. In fact, adding your own C, C++, or Fortran can be
done nearly automatically using tools that have been written for the pur-
pose. (See “User-contributed packages” on page17.)
Getting Started With CDAT 3

Getting Started With CDAT
Some of the key components supplied by PCMDI include:

• cdms, a package that enables access to many different data file for-
mats;

• cdutil, a package containing utility functions for climatology and
averaging;

• genutil, a package containing statistics functions with special fea-
tures for climate data;

• vcs, a two-dimensional graphics package.

1.1.2 The CDAT Project at SourceForge

CDAT is hosted at SourceForge, a free service provided by VA Linux,
Inc. to the Open Source Community. Using Sourceforge enables us to have
many services for users:

• A release facility, where users can download binary and source
releases and see release notes.

• A bug-tracking facility, where users can submit bugs and track
their status, and receive mail when they are fixed.

• A mailing list for discussion of CDAT.

You can use these facilities without registering at SourceForge, but registra-
tion, which is quick, easy, and free, will enable you to participate in the full-
est possible way. In particular, it is very helpful to us if you are registered
when you submit a bug report.

The CDAT Home Page is cdat.sourceforge.net. That page documentation
and links to related sites. One link is to the CDAT Project Page,
sourceforge.net/projects/c/cd/cdat. (No, we aren’t stuttering; there are so
many projects on SourceForge that they had to organize their web site this
way). The Project Page contains the bug-tracking, mail list, and download
facilities.
4 Getting Started with CDAT

Setting up CDAT
1.2 Setting up CDAT

CDAT is available in binary form for a number of platforms. See the
CDAT Project Page for the available downloads. It is also available in
source form. With the source form, you pick an installation directory. With
the binary form, you simply undo the tarball where desired. The top level of
the tarball will have a name like cdat-3.0.0.

Either form of CDAT can be installed anywhere on your computer. Wher-
ever you install it, it is important to do two things:

1. Put the ‘bin’ directory of the installation in your Unix search path
so that executing

where python

prints the path to the python in your CDAT installation. For exam-
ple, if you have untarred a binary into /usr/local/, you want /usr/
local/cdat-3.0.0/bin in your path, and the above command should
print “/usr/local/cdat-3.0.0/bin/python”. Depending on your OS,
you may need to issue a “rehash” command after doing this. Typi-
cally, you are going to want to fix this permanently in your startup
files.

2. Set the environment variable LD_LIBRARY_PATH to include the
directories where Netcdf, tcl, and tk are installed. If you do not
have these, you will need to obtain them and install them first.
Usually they are placed in /usr/local.

To build from source, untar the distribution into any directory of your own
and proceed to follow the instructions in the README file at the top level.

A first test
Execute “python” and a prompt >>> should appear. Enter the com-

mands:

>>> import cdms
>>> import vcs
Getting Started With CDAT 5

Getting Started With CDAT
If you get back another prompt after each command, CDAT is installed cor-
rectly. You can leave python by entering “Control-D”.

Troubleshooting

If you get an error message about not being able to load a library such as
libnetcdf.so, it means you didn’t set LD_LIBRARY_PATH.

If python says it can’t find modules such as cdms or vcs, it means you don’t
have our python at the front of your path. Linux, for example, comes with a
python already installed so you might be running the wrong one. We have to
give you one of our own to make sure your Python version matches the one
with which we built all the CDAT components.

1.3 Learning Python

Python is documented down to the last detail at python.org and the
SourceForge website python.sourceforge.net. There are now many books
about it. We can recommend the free tutorial available at python.org in the
documentation section. The book “Learning Python” from O’Reilly Press is
another excellent resource.

CDAT makes heavy use of Numerical Python, a fast array facility for
Python. The documentation for Numerical Python is at numpy.source-
forge.net.

Although CDAT itself is not yet available on Windows or MacIntosh,
Python is. Python is even available for the Palm Pilot. You can download a
Windows installer and even install Numerical Python on Windows (see
numpy.sourceforge.net).

You may also wish to run Python in a nicer environment than a shell. The
IDLE environment can be started by entering “idle”. Documentation for
IDLE is available via its “help” button. Many people run Python from
Emacs. Information about how to configure your editor for writing Python
code is available on the Python site.
6 Getting Started with CDAT

The VCDAT GUI
1.4 The VCDAT GUI
Getting Started With CDAT 7

Getting Started With CDAT
There is no easier way to use CDAT than by starting up the
Visual CDAT application, vcdat. If you have Python installed correctly as
described above, then executing “vcdat” should be all you need to do.

We think most users will be able to do a lot with VCDAT without reading
any instructions. Give it a try, and if you have questions consult the VCDAT
documentation on our home page.

For some users, this powerful tool may suffice for most of their needs. It
even contains facilities within it to help you learn how to write the scripts
that can do what you want to do, so that you can do those things without
VCDAT.
8 Getting Started with CDAT

CHAPTER 2 Basic tutorials

CDAT comes with a suite of tutorials to help you learn how to use it. You can get these tutorials
and sample data from our website.
2.1 How to get the tutorials and data

The tutorials are designed to introduce you to the most common oper-
ations for climate data analysis. They are available as a Python script from
our download area under “Tutorials”. If you want to try executing these
examples, do these steps:

1. From the Tutorials area of the download facility at cdat.sf.net,
download the data files tarball and unpack it.

2. Download the tutorial files. In each tutorial you will need to edit
the line(s) near the top that sets the location of the data files to
match the location where the data will be on your system.

We will now describe the tutorials.

2.2 getting_started_tutorial.py

This tutorial is the first one to study. The tutorial consists of three
parts:
Getting Started With CDAT 9

Basic tutorials
Example 0: the basics
• How do I open a file?

• How do I see what variables are in the file?

• How do I read a variable?

• How can I get the metadata for the variable?

• How do I get the shape (i.e length of each dimension) of the
variable?

• How do I extract a variable and rewrite it to another file?

• How do I extract data at a specific latitude/longitude from the
file?

• I do not want to retain the latitude and longitude axes since
they are single points. How do I do that?

• How do I extract a subset (or a region) from the file?

• How can I define a region of interest and reuse it without a lot
of typing?

• How do I see what the latitude and longitude values extracted
are?

• What if I need say the 2nd axis whose name I do not know?

• How do I get the exact region with the precise bounds and not
any spillover into adjoining grid cells?

• How do I get the area averaged NINO3 values?

• How do I see what the start time in the data set is?

• How do I extract the data based on time axis values since I
know the first time point in the data?

• How do I extract a time slice with specific time start and end ?

Example 1: Dealing with data from other sources
• Reading ASCII data like that written by Fortran

• "Masking" or setting a certain value as "Missing data"

• How to create an Axis

• How to set the name of the axis
10 Getting Started with CDAT

Statistics
• How to set the axis units.

• How to create Uniform Latitude and Longitude axes.

• How to get the Bounds.

• How to create a "variable" with all the metadata from an
array.

• What are the options for createVariable?

• How to check the shape of the variable

• How to check the metadata or decorations to the variable and
its axes.

• How to plot a variable using VCS

• How to write a variable out in a netcdf file.

• Averaging with weights over specified dimensions.

• Specifying weights.

• Generating weights.

Example 2. Masking out data using a land fraction data file.
This example opens a temperature data file and a corresponding
land fraction data file. Use the land fraction data to select land/
ocean areas from the temperature data. After masking out data use
the averaging routines to compute the avea averages.

2.3 Statistics

statistics_tutorial.py illustrates the use of the tools for calculating sta-
tistics such as covariances on climate data.
Getting Started With CDAT 11

Basic tutorials
2.4 Dealing with time

Dealing with time is one of the hardest parts of dealing with climate
data files. times_tutorial.py illustrates how to use the facilities in CDAT that
make dealing with time less painless. Examples are given of:

• Compute the climatological DJF

• Calculate departures from that

• Compute the departures from the 1979-1988 period

• Using the predefined seasons:
JAN, FEB, MAR, APR,, DEC
DJF, MAM, JJA, SON
YEAR -- returns annual means
ANNUALCYCLE -- returns monthly means for each month
of the year
SEASONALCYCLE -- returns seasonal means for the 4 pre-
defined season

• Compute the annual mean for each year

• Compute the global average for each month

2.5 Plotting with xmgrace

Nothing emphases the fact that CDAT is a collection of tools that can
be extended by the user better than the xmgrace module. This module pro-
vides an interface to the popular xmgrace utility (which you must have
installed yourself separately). One of our users, Charles Doutriaux, who
loved xmgrace built this interface. The xmgrace tutorial will teach you how
to use it.

The plot shown on the next page was produced with the xmgrace module
tutorial (but it had to be scaled down to fit the page).

A spreadsheet xmgrace.xls is available via the website. This spreadsheet
contains detailed information needed by xmgrace users.
12 Getting Started with CDAT

90N 90S60S60N 30SEq30N
230

240

250

260

270

280

290

300

Year 1
Year 2

NCEP Reanalysis, Surface air temperature
First and Last year

-1

0

1

Year 2-1

Difference

Sa
m

pl
e

Basic tutorials
14 Getting Started with CDAT

Adding your science
CHAPTER 1 Creating
New
Packages

1.1 Adding your science

One of CDAT’s strengths is that it is an open system. You can add your own
software written in C, Python, or Fortran. The easiest way to learn to do this
is to copy our examples. Get the CDAT source distribution and look for sub-
directory ‘contrib’ in the top-level directory. The README file in contrib
explains what to do.

There are tools that may be useful to you.

• The SWIG utility (Simplified Wrapper and Interface Generator,
www.swig.org) can wrap C and C++ routines.

• Pyfort (pyfortran.sourceforge.net) connects Fortran routines to
Python.

Depending on your needs, you may wish to use a layer of Python along with
the automatically created interface, in order to make a nicer interface or to
use the Fortran or C simply as computational engines. An example of this is
the EOF package described below: it uses a Fortran linear algebra routine to
enhance performance, but the “science” is in Python.

If you follow the protocols in ‘contrib’ then your package can be added to
the PCMDI distribution as well. Just send it to us and be sure to include a
README that explains:

• How to use the package

• Contact information about the author.
Getting Started With CDAT 15

Creating New Packages
You may also be able to generate useful documentation by executing the
routines happydoc or pydoc. happydoc works only on Python code; pydoc
works on the installed modules. Both routines print help packages if exe-
cuted with the argument, ‘--help’, and both are already installed in your cdat
‘bin’ directory.
16 Getting Started with CDAT

CHAPTER 2 User-contributed
packages
If you have the source distribution, use the README files in the subdirec-
tories of the contrib directory for full documentation. Try running pydoc -w
with the name of the package as an argument to create a web page showing
the package’s interface.

Due to the very nature of the user-contributed packages, the following list
of available packages and their exact capabilities may be incomplete or
inaccurate. PCMDI does not maintain all of these packages, and is not
responsible for fixing bugs them -- please contact the author.
Getting Started With CDAT 17

User-contributed packages
2.1 Package: asciidata

Author: Paul Dubois (dubois1@llnl.gov)

Summary: Package asciidat can be used to read text files written by such
programs as spreadsheets, in which data has been written as comma, tab, or
space-separated numbers with a header line that names the fields. Using the
functions in asciidata, you can convert these columns into Numerical arrays,
with control over the type/precision of these arrays.

Example
import asciidata
time, pressure = asciidata.comma_separated(‘myfile.csv’)

Documentation: pydoc -w asciidata

2.2 Package: binaryio

Author: Paul F. Dubois

Summary: Read and write Fortran unformatted i/o files. These are the files
that you read and write in Fortran with statements like read(7) or write(7).

Such files have an unspecified format and are platform and compiler depen-
dent. They are NOT portable. Contrary to popular opionion, they are NOT
standard. The standard only specifies their existance and behavior, not the
details of their implementation, and since there is no one obvious imple-
mentation, Fortran compilers do vary. We suggest writing netcdf files
instead, using the facilities in cdms.

Documentation: pydoc -w binaryio

2.2.1 Usage summary:
18 Getting Started with CDAT

Package: binaryio
 binaryio: Fortran unformatted io
 Uses Fortran wrapper module "binout"
 Usage:
 from binaryio import *
 iunit = bincreate('filename')
 binwrite(iunit, some_array) (up to 4 dimensions, or sca-
lars)
 binclose(iunit)
 iunit = binopen('filename')
 y = binread(iunit, n, ...) (1-4 dimensions)
 binclose(iunit)

Note that reads and writes must be paired exactly. Errors will cause a For-
trastop that cannot be recovered from. You must know (or have written ear-
liein the file) the sizes of each array.

All data is stored as 32-bit floats.
Getting Started With CDAT 19

User-contributed packages
2.3 Package: eof

Author: Paul Dubois (dubois1@llnl.gov) based on work by Ken Sperber
and Ben Santer.

Summary: Package eof calculates Explicit Orthonormal Functions of either
one variable or two variables jointly. Having selected some data, the key
call is to create an instance of eof.Eof giving one or two arguments. In this
example, a portion of the variable ‘u’ is analyzed. After the result is
returned, it is an object with attributes containing such things as the princi-
pal components and the percent of variance explained. Optional arguments
are available for controlling the subtraction of the mean from the data, the
weighting by latitude, and the number of components to compute.

This routine is computationally efficient, solving the problem in either the
normal space or the dual space in order to minimize computations. None-
theless, it is possible that this routine will require substantial time and space
if used on a large amount of data. This cost is determined by the smaller of
the number of time points and the total number of space points.

Documentation: pydoc -w eof.Eof

2.3.1 Example

import cdms, vcs
from eof import Eof

f=cdms.open('/home/dubois/clt.nc')
u = f(‘u’, latitude=(-20,40), longitude=(60, 120))
result = Eof(u)
principal_components = result.principal_components
print "Percent explained", result.percent_explained
x=vcs.init()
vcs.pauser.pause(3)
print len(principal_components)
for y in principal_components:
 x.isofill(y)
20 Getting Started with CDAT

Package: eof
 x.clear()
u1 = v.subRegion(latitude=(amr[0], amr[1], 'cc'),
 longitude=(amr[2],amr[3],'cc'), order='xyt')
result2 = Eof(u, number_of_components=4,
mean_choice=12)
print "Percent explained", result.percent_explained
Getting Started With CDAT 21

User-contributed packages
2.4 Package: lmoments

Author: Michael Werner based on L-moments library by J. R. M. Hosking

Summary: This package is an interface to a Fortran library. The calling
sequence from Python differs from the Fortran convention. In general, out-
put and temporary arguments are not supplied in making the Python call,
and output arguments are returned as values of the function.

Documentation: pydoc -w lmoments to see list of functions. pydoc -w lmo-
ments.pelexp, or other function name, for the particular. See also documen-
tation for Pyfort at pyfortran.sourceforge.net for further details on argument
conventions. If built from source, a file flmoments.txt appears which gives
the Python calling sequences.
22 Getting Started with CDAT

Package: regridpack
2.5 Package: regridpack

Author: Clyde Dease

Summary: Interface to regridpack

Documentation: This package contains a Python interface to the subroutine
library regridpack.

pydoc -w adamsregrid Documentation online at cdat.sourceforge.net. See
also documentation for Pyfort at pyfortran.sourceforge.net for further
details on argument conventions.
Getting Started With CDAT 23

User-contributed packages
2.6 Package: sphere (spherepack)

Author: Clyde Dease

Summary: Interface to Spherepack

Documentation: This package contains a Python interface to the subroutine
library Spherepack.

pydoc -w sphere to see list of functions. Documentation online at
cdat.sourceforge.net. See also documentation for Pyfort at pyfortran.source-
forge.net for further details on argument conventions.
24 Getting Started with CDAT

trends
2.7 trends

Author: Pyfort wrapping by Paul Dubois of a routine by Ben Santer

Summary: Computes variance estimate taking auto-correlation into account.

Documentation:

import reg_arl from trends
rneff, result, res, cxx, rxx = reg_arl (lag, x, y)
 integer lag Max lag for autocorrelations.
 real x(n1) Independent variable
 real y(n1) Dependent variable
 real, intent(out):: rneff !Effective sample size
 real, intent(out):: result(31) !Array of linear regression
results
 real, intent(out):: res(n1) !Residuals from linear regres-
sion
 real, intent(out):: cxx(1 + lag) !Autocovariance function
 real, intent(out):: rxx(1 + lag) !Autocorrelation function
Getting Started With CDAT 25

User-contributed packages
2.8 Package: ort

Author: Curt Covey

Summary: Read data from an OORT file.

Documentation: Module ort contains one Fortran function, read1f:

2.8.1 Calling sequence:

import ort
lon, lat, data, nr = ort.read1f(filename, maxsta, nvarbs,
 nlevels)

Input:
 character*(*) filename ! name of the file to be read
! max number of stations (soundings) possible
 integer maxsta
! number of variables and P-levels in each sounding
 integer nvarbs, nlevels

Output:
 ! longitudes / latitudes of the stations
 real, intent(out):: lon(maxsta), lat(maxsta)
! sounding data
 real , intent(out):: data(nvarbs, nlevels, maxsta)
 ! actual number of stations with data
 integer , intent(out):: nr
26 Getting Started with CDAT

	Climate Data Analysis Tools Version 3
	Table of Contents
	CHAPTER 1 Getting Started With CDAT
	1.1 Introduction
	1.1.1 A New Paradigm
	1.1.2 The CDAT Project at SourceForge

	1.2 Setting up CDAT
	1.3 Learning Python
	1.4 The VCDAT GUI

	CHAPTER 2 Basic tutorials
	2.1 How to get the tutorials and data
	2.2 getting_started_tutorial.py
	2.3 Statistics
	2.4 Dealing with time
	2.5 Plotting with xmgrace

	CHAPTER 1 Creating New Packages
	1.1 Adding your science

	CHAPTER 2 User-contributed packages
	2.1 Package: asciidata
	2.2 Package: binaryio
	2.2.1 Usage summary:

	2.3 Package: eof
	2.3.1 Example

	2.4 Package: lmoments
	2.5 Package: regridpack
	2.6 Package: sphere (spherepack)
	2.7 trends
	2.8 Package: ort
	2.8.1 Calling sequence:

